[Ciencias de Joseleg]
[Física] [Mecánica]
[Unidades y medidas]
[Ejercicios resueltos]
[1-Introducción]
[2-Medición y el método
científico][3-Que son las unidades de
medición][4-Historia de la medición][5-Sistema métrico decimal][6-Viejo sistema
internacional de unidades] [7-Unidades fundamentales]
[8-Nuevo Sistema
internacional de unidades][ 9-Unidades derivadas][10-Prefijos decimales y
notación exponencial][11-Lenguaje del sistema internacional][12-El sistema imperial][13-Cifras significativas][14-Notación científica][15-Conversiones de unidades][16-Medición e incertidumbre][17-Regla de tres analítica][18-Análisis dimensional][Referencias]
A medida que la civilización humana se ha ido haciendo más compleja, también lo ha venido haciendo la necesidad de contar con mejores sistemas de medición (Klein, 2012). Los sistemas de medición son necesarios para tareas como: la construcción de asentamientos de forma apropiada, la apropiada elaboración de ropa, la distribución del alimento, el pago de tributos religiosos o fiscales, la asignación de recompensas y la planificación para eventos futuros.
Las unidades de medición han tomado una gran variedad de
formas a lo largo de la historia, desde las expectativas simples en las
transacciones comerciales mediadas por instrumentos como la balanza, hasta
sistemas complejos supranacionales que integran o estandarizan los sistemas de
medición de amplias regiones del mundo durante periodos extensos de tiempo
histórico. Los sistemas de medición de las sociedades antiguas pueden ser
inferidas con una aproximación confiable gracias a las muestras arqueológicas
almacenadas en los museos. La comparación de las dimensiones de los monumentos
dejados por las civilizaciones pasadas con las que dejaron los escritores o
arquitectos antiguos son una forma de determinar las magnitudes de los sistemas
de medición de tiempos antiguos, especialmente de las civilizaciones más
desarrolladas que construyeron monumentos perdurables junto con sus textos
arquitectónicos (Mari, 2003).
Un ejemplo de esto fue que al comparar las medidas de lo que
queda del Partenón griego con la descripción de Plutarco de esa misma
edificación, los científicos ahora tienen una aproximación casi perfecta de la
medida de la unidad para la distancia empleada por los griegos atenienses, el
pie ático (Levy, 2011). La tendencia de los sistemas
de medición de la antigüedad es que la estandarización de un sistema formal de
medidas es directamente proporcional al grado de desarrollo de la civilización,
y en general las civilizaciones más desarrolladas técnica y comercialmente
emplean sistemas de medición más estandarizados, regulados por un gobierno
centralizado y una burocracia efectiva y eficiente.
Varios sistemas de medición antiguos tuvieron cierto grado de estabilidad durante largos periodos históricos como el sistema babilónico, el sistema egipcio, el sistema helenístico/fileteriano, el sistema olímpico, el sistema imperial británico y el sistema métrico francés (Klein, 2012).
Características
de los sistemas de medición antiguos
Todos los sistemas de medición antiguos se caracterizan por
una vinculación a la cultura, imperio o gobernante de turno. Su influencia es
directamente proporcional al prestigio y poder cultural, así que los más
conocidos siempre están relacionados a los mayores imperios hespéricos, a tal
punto en que actualmente podemos definir sus valores en términos de nuestros
propios sistemas de medición, mientras que los sistemas de periodos oscuros
como la alta edad media se desconocen, especialmente porque su extensión muchas
veces abarcaba el mercado de un solo pueblo.
Los sistemas de medición se estandarizaban en base a dos
fuentes principales, los astros y el arbitrio de los reyes. La medida del
tiempo por ejemplo se definía en base a la duración del día en el equinoccio, y
en consecuencia su definición ha permanecido bastante constante, junto con la
medición de los ángulos hasta nuestros días (Vodolazhskaya,
Usachuk, & Nevsky, 2015).
La medición de las distancias se caracteriza por una
vinculación a la magnitud de los cuerpos de los reyes de turno para las
dimensiones intermedias, como las que cumple nuestro metro. Para las medidas
cortas que son funciones de nuestros centímetros y milímetros o para las
medidas largas que son función de nuestro kilómetro se empleaban medidas
relativamente independientes. En otras palabras las unidades de medida, larga,
media y larga eran definidas arbitrariamente y su valor podía cambiar por
edicto del gobernante de turno (Myller, 2009).
En cuanto a las unidades de volumen se empleaban semillas o agua como valores estándar (Zhengzhang, 1991), pero debido a que las semillas pidan variar dependiendo de la calidad de la cosecha o que la relación volumen-masa del agua depende de su temperatura, existen variaciones de lugar en lugar en cuanto a las definiciones de volumen.
Los
más antiguos conocidos
Los primeros sistemas de medición parecen estar relacionados
con los primeros sistemas de escritura, y tiene sentido, si la escritura surge
para recopilar la información agrícola, los primeros textos debieron ser datos
de cantidades de grano, y alabanzas a los dioses por ello (Rao, 1997). Estamos hablando de un
periodo de tiempo que retrocede hasta hace unos 6000 a 5000 años, justo en las
civilizaciones que desarrollaron los primeros sistemas de escritura como
Mesopotamia, Egipto y el valle del indo.
La estandarización de las unidades era más bien
problemática, de hecho, los nombres de las unidades en los sistemas egipcio,
babilónico y hebreo están relacionados con partes del cuerpo humano,
especialmente las unidades de distancia. Así desde la antigüedad las unidades
de distancia han sido el dedo, la mano, el pie, el codo, el brazo, mientras que
las unidades de tiempo fueron estandarizadas en base a los periodos de día
solar, especialmente durante los equinoccios. Los volúmenes se definían en base
a la cantidad de semilla almacenada en algún contenedor estandarizado o
mediante el contenido de la cantidad de semillas que se podían almacenar allí,
así el volumen de la semilla misma se convertía en una unidad de medida
estándar para el volumen.
Sin embargo, hay que anotar que, en muchos casos, cada unidad de medida ha proseguido una evolución diferente, por ejemplo, el sistema de medición del tiempo ha permanecido en el fondo muy constante desde la época babilónica, pero las unidades de distancia si han cambiado bastante, sometidas a los devenires de la historia y de la política.
Figura 4‑1. El codo.
Unidades
de distancia
Las unidades de distancia más antiguas conocidas actualmente
son el cúbito egipcio, el cúbito mesopotámico y el arco indico. El cúbito
generalmente también es denominado como el codo y se define como la distancia
entre el codo de un ser humano hasta el dedo índice (Smith, 2013). A partir del codo se
definieron con diferencias menores la palma y el dígito. El sistema imperial británico emplea unidades
que descienden de estos sistemas antiguos como la pulgada, el pie y la yarda
por una serie de complicadas relaciones históricas que aún no se comprenden del
todo.
Los griegos y persas empleaban unidades de distancia más
largas como la parasanga, la cual según Herodoto equivalía a 600 estadios (Geus, 2014), y cada estadio era
representado por 600 pies o 185 metros actuales aproximadamente (Geus, 2014). Los romanos introdujeron
otra unidad de medida larga de distancia y es la milla o mille passus,
evidentemente haciendo referencia directamente a su equivalencia como
1000 pasos (Smith, 2016), lo que equivaldría a unos
5000 pies (Nawrocki, 2015;
Stone, 2014).
La mille
fue introducida en Inglaterra durante el periodo del apogeo imperial y
permaneció en la isla después de que los romanos se retiraron. Durante el
reinado de la reina Elizabeth I la milla fue redefinida a unos 5280 pies (Stone, 2014).
Sin embargo, lo más común fue que con la caída del imperio romano, la jurisdicción de un sistema particular de medidos solo se extendiera a la jurisdicción militar del señor feudal local, lo cual muchas veces era únicamente el mercado local del burgo. Evidentemente en la alta edad media la gente no viajaba mucho y el comercio no era muy común, sin embargo, a medida que las sociedades comenzaron a volverse nuevamente más complejas, la situación comenzó a dar lugar nuevamente a la evolución natural de los sistemas de medición. Como siempre la solución había sido la imposición de la jurisdicción militar del gobernante de turno, cada rey extendía sus propios estándares a las zonas que conquistaba, y lo peor de todo es que la estandarizaba bajo la medida de sus nobles dimensiones (Velkar, 2012). Esto implicaba que con el ascenso de cada nuevo gobernante los estándares de medición podían cambiar o no dependiendo de la personalidad del monarca (Connor, Simpson, & Morrison-Low, 2004; Prior, 1924; Zupko, 1978).
Figura 4‑2. Cuando el gobierno imperial se debilita, es común que cada gobierno autónomo instaure sus propios sistemas de medida y moneda, lo que dificultaba el comercio.
En 1305 el rey de Inglaterra decretó que la unidad de
distancia en su país sería la yarda, la cual sería la distancia entre la punta
de su nariz hasta la punta de sus dedos cuando su brazo estuviera completamente
estirado (Roth, 2011). De manera similar, la unidad
de distancia pie fue adoptada de los reales pies del rey Luis XIV de Francia (Tsipenyuk, 2009). Ninguna de estas unidades
prevaleció con el tiempo debido a que cuando cada nuevo rey asumía el trono,
las medidas cambiaban.
Sin embargo a finales de la edad media una nueva fuerza política emergía al interior de los círculos de nobles intelectuales, los filósofos naturales, quienes hicieron varios llamados para la institución de un Sistema Universal de medición, el primero en hacerlo fue John Wilkins en 1668 (Shapiro, 1969; Wilkins, 1974), aunque hubieron otros, por ejemplo Tito Livio Burattini quien propuso una unidad de medición conocida como el metro católico (Agnoli & D’Agostini, 2004), los cuales se definían en base a fenómenos naturales independientes de las dimensiones de los reales cuerpos de los reyes de turno. Estos filósofos naturales también proponían que las medidas largas o cortas debían establecerse en base al patrón inicial modificado por medio de modificaciones decimales o duodecimales (Cheng, s/f).
Figura 4‑3. Patrick McGoohan como Eduado I el zanquilargo.
La unidad de distancia propuesta por Wilkins era la del péndulo de segundos, es decir, un péndulo empleado para medir los segundos en un reloj de engrane. Dichos péndulos habían sido introducidos recientemente por Christiann Huygens, y de hecho su magnitud es semejante al del metro francés y metro moderno. El problema radicaba en que la magnitud del segundo variaba de lugar en lugar y por consiguiente la longitud del péndulo también tenía leves pero importantes diferencias (Hénin, 2012; O’Connor & Robertson, 1997). El llamado para el desarrollo de un sistema de medidas independiente de la voluntad de los reyes no se completaría sino hasta la revolución francesa.
Unidades
de masa
El grano fue uno de los más antiguos estándares para la
definición de la masa, y de hecho los metales preciosos solían tasarse en base
a la masa de las semillas (Zhengzhang,
1991).
Con el tiempo los propios metales preciosos se convirtieron en estándares, como
la mina, el sjekel y el todo todopoderoso talento que era la mayor unidad de
medida, especialmente si se trataba de un talento en oro (Mundell, 2002). Las magnitudes de estas
unidades variaban de lugar en lugar y de siglo en siglo, en el sistema
babilónico por ejemplo 60 shekels equivalían a 60 minas y 60 minas equivalían a
un talento (Janowski &
Balewski, 2014),
evidentemente estamos tratando con un sistema análogo al del tiempo, pues los
babilonios desarrollaron ambos, junto con el sistema de medición de ángulos (Fatoohi &
Stephenson, 1997; Olson, Zenigami, & Okazaki, 2008; Stephenson &
Fatoohi, 1994).
Los romanos recibieron estas medidas orientales y las mezclaron con sus propios sistemas, así el talento romano equivalía a 100 libras romanas, mientras que la libra era una unidad más pequeña de una mina aunque de dimensiones comparables (West, 1941). El problema radicaba en que las semillas poseían masas variables, por lo que se buscaron otros estándares, aunque la única alternativa por mucho tiempo fue el agua. Al igual que con la unidad de distancia, con la caída del Imperio Romano, las unidades de masa se fragmentan y debe esperarse hasta la revolución francesa para encontrar un sistema realmente estandarizado
Primeras
propuestas de un sistema universal
El sistema métrico decimal se basa en la notación de 10, el cual es en sí mismo una notación de medida simbólica dependiente del desarrollo cultural.
Figura 4‑4. Leonardo de Pisa (Pisa, c. 1170 - ib., post. 1240), también llamado Leonardo Pisano, Leonardo Bigollo o simplemente Fibonacci, fue un matemático italiano. Difundió en Europa la utilidad práctica del sistema de numeración indo-arábigo frente a la numeración romana, y fue el primer europeo en describir la sucesión numérica que lleva su nombre.
Este sistema empleaba símbolos independientes de las letras para leer los textos, de forma que las magnitudes numéricas eran representadas por ideogramas diferentes. Este sistema evolucionó inicialmente en la India (Burnett, 2006), siendo sus símbolos: 0 para la nada, y en secuencia 1, 2, 3, 4, 5, 6, 7, 8, 9, el diez no era representado por un símbolo independiente, sino que se empleaba la combinación del 1 y el 0 formando el 10. El cien era representado por la combinación de tres símbolos 100 y así sucesivamente. Esto puede parecer estúpido, más cuando lo aprendemos en primaria, pero es que para la época fue una enorme revolución científica y mercantil (Smith & Karpinski, 2013). En cualquier caso, los árabes islámicos llegaron a su apogeo más o menos por aquel tiempo y llevaron las cifras indicas a Europa junto con el desarrollo de los cálculos comerciales, y en Europa estos símbolos recibieron el nombre de numerales arábigos, tal como los conocemos actualmente.
Figura 4‑5. John Wilkins (14 de febrero de 1614 - 19 de noviembre de 1672) fue un religioso y naturalista inglés, además del primer secretario de la prestigiosa "Royal Society" y autor de varios ensayos curiosos.
Este sistema resultó ser más útil para hacer cálculos
comerciales, específicamente no es que efectuar más rápido que el cálculo por
ábaco, pero sí que permitía hacer cálculos más precisos, especialmente porque
las unidades podían ser subdivididas empleando una coma o punto. Así la mitad
de una determinada unidad se representaba como 0.5, la cuarta parte como 0.25 y
así en adelante. Estas decimas eran vitales para los comerciantes, lo cual
permitía establecer acuerdos mucho más precisos en los contratos, aunque
algunos iletrados no confiaban mucho en los hombres que se sentaban en bancas a
hacer estos cálculos que nadie entendía. De allí proviene la palabra cifras
para los numerales índicos, debido a que no se entendían claramente (Murphy &
Jones, 2005).
En cualquier caso los hombres sentados en bancos que hacían estos cálculos acumularon rápidamente poder y prestigio, y si alguien hacia trampa el gobernante local venia, rompía la banca sobre la cual hacia sus cálculos (Murphy & Jones, 2005) y lo llevaba a la orca, después de todo una de las lecciones que cualquier humano aprende es que no hay que meterse con del dinero de otra persona. De allí proviene la expresión banca para referirse a los bancos, pues literalmente se hacían negocios en un banco, y banca rota era literalmente la destrucción de la mesa o banco de cálculos (Murphy & Jones, 2005).
Figura 4‑6. James Watt (Greenock, Escocia, 19 de enerojul./ 30 de enero de 1736greg.-Handsworth, Birmingham, Inglaterra, 25 de agosto de 1819) fue un ingeniero mecánico, inventor y químico escocés. Las mejoras que realizó en la máquina de Newcomen dieron lugar a la conocida como máquina de vapor de agua, que resultaría fundamental en el desarrollo de la primera Revolución Industrial, tanto en el Reino Unido como en el resto del mundo.
En Europa en 1202, Fibonacci introdujo los numerales con
base decimal al resto de filósofos naturales europeos, y para 1586 Simon Stevin
publicó “la décima” que algunos autores establecen como la primera publicación
a cerca de las fracciones decimales, la cual era una forma diferente de definir
los valores decimales, pero como números fraccionarios: por ejemplo una décima
se representa como 1/10, una centésima como 1/100 etc (Sanford, 1921;
J. A. Smith, 2008; Struik, 1959). Este sistema era conveniente para la aplicación
fiscal, en otras palabras, para cobrar impuestos o dividendos en tratos
comerciales, por lo que Stevin opinaba que un sistema de medidas comercial
basado en una diferenciación decimal solo sería cuestión de tiempo. En 1643
John Wilkins propuso que la base para dicho sistema decimal debía ser el
péndulo para medir segundos, pero la definición del segundo aun no era lo
bastante precisa.
En 1670 Gabriel Mouton propuso que la definición de la unidad de distancia debía basarse en el Angulo de la propia Tierra. La unidad base de Mouton era una unidad de medida larga, la milliare que se definia como la distancia en el meridiano de dos líneas que se proyectan al centro del planea formando un arco-minuto. 1 milliare se devidia en 10 centurias, 1 centuria en 10 decurias, 1 centuria en 10 virgias, 1 virgia en 10 virgulas, 1 vírgula en 10 décimas, 1 décima en 10 centesimas y 1 centecima en 10 milesimas. Bajo nuestros estándares, la vírgula mediría 1.852 centimetros (Vervoort, 1973).
Comerciantes
y filósofos naturales
Durante el siglo XVIII los aliados en bloques de naciones
estado en guerra entablaron estrechas relaciones comerciales y científicas, lo
cual conllevó a que los comerciantes y filósofos naturales presionaran a sus
gobiernos para universalizar el sistema de medición, aunque evidentemente esto
solo se logró entre los aliados. Los españoles y franceses se alinearon, así
como los ingleses y rusos (Jackson, 1882;
Loidi J N & Saenz P M, 2006). Sin embargo, el proceso no era perfecto.
En 1783 James Watt
protestó por las dificultades que tuvo para poder comunicar sus descubrimientos
sobre la energía con otros filósofos naturales germánicos, y promovió la
implementación de un sistema universal, que como el de Wilkins, se basara en
una modificación decimal para las medidas cortas y las medidas largas (Carnegie, 2005). En 1788 en filosofo natural
Antoine Lavoisier comisionó la construcción de cilindros de estaño que fue
conocida como la libra francesa (Tavernor, 2007). Sin embargo, el apego de los
monarcas a ser la medida de todas las cosas, seguía impidiendo la institución
de un sistema universal, y la única solución posible es que les cortaran la cabeza
a los reyes, lo cual en efecto sucedió.
No hay comentarios:
Publicar un comentario